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A Z2×Z2-graded generalisation of the quantum superplane is proposed and studied. We con-
struct a bicovariant calculus on what we shall refer to as the double-graded quantum superplane.
The commutation rules between the coordinates, their differentials and partial derivatives are
explicitly given. Furthermore, we show that an extended version of the double-graded quantum
superplane admits a natural Hopf Z2

2-algebra structure.
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1. Introduction
Noncommutative geometry has been playing an ever-increasing rôle in mathematics

and physics over the past few decades (see for example [20, 30, 47]). At the scale
at which quantum effects of the gravitational field are dominant, it is expected
that space-time will depart from its classical smooth Riemannian structure. Upon
rather general arguments, space-time is expected to be some kind of noncommutative
geometry. Unfortunately, nature has so far provided few hints as to what one should
expect from these generalised geometries. The fundamental objects at play here are
associative algebras and differential calculi over them. Woronowicz [59] initiated
the study of quantum groups and their differential calculi as the basic objects in
noncommutative geometry. This approach stresses that the properties of the quantum
group are key to constructing differential calculi. A different approach follows Manin’s
philosophy (see [46]) that differential forms on noncommutative spaces are defined
in terms of their noncommutative or quantum coordinates and the properties of
quantum groups acting upon these spaces. Wess and Zumino [58] used the approach
of Manin to define a covariant differential calculus on the quantum hyperplane.
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The first description of Manin’s quantum plane as a Hopf algebra is by Tahri
[53]. For quantisations of various superspaces and their corresponding differential
calculi see [15, 17, 32, 49, 52]. Nontrivial actions of quantized universal enveloping
algebras on the quantum plane were considered in [31]. We remark that quantum
groups (Hopf algebras), due to their tight relation with the Yang–Baxter equation,
are important in conformal field theory, statistical mechanics, integrable systems,
etc. Indeed, quantum groups, as a particular class of Hopf algebras, originated in
the work of Drinfel’d and Jimbo (see [26]) on quantum inverse scattering. Today
it is realised that many combinatorial aspects of physics have neat formulations in
terms of Hopf algebras [28].

Inspired by the recently developed locally ringed space approach to Zn2-manifolds
(see [11–13, 21, 22]), we examine quantum Z2

2-planes, or as we prefer to call
them, double-graded quantum superplanes. Such noncommutative geometries are the
simplest examples of noncommutative Zn2-spaces (n ≥ 2). Much like supermanifolds,
Zn2-manifolds offer a ‘halfway house’ on one’s passage from classical geometry
to noncommutative geometry. Quantising superspaces and similar offers a deeper
picture here as well as very workable examples of noncommutative geometries.
Indeed, ‘nonanticommuting superspaces’ have long been studied in physics because
various background fields in string theory lead to noncommutative deformation of
superspace. For example, R-R field backgrounds lead to ‘θ − θ ’ deformations and
gravitino backgrounds lead to ‘x − θ ’ deformations (see [23, 51]). It is probably
fair to say that the mathematics literature on ‘noncommutative superspaces’ is not
so developed (the reader may consult [24] for an overview).

We also point out that Zn2-geometry, as well as the double-graded quantum
superplane sit comfortably within Majid’s framework of braided geometry, see
[43–45] for very accessible reviews. The general idea is to replace the standard
Bose–Fermi sign factors with a more general braided relation. Noncommutative
geometry formulated in braided monoidal categories has been very successful and
we must mention toric noncommutative geometry as a key example, see for example
[8, 10, 19]. In this sense, we present a very specific example of a braided geometry
inspired by Zn2-geometry. Loosely, a Zn2-manifold is a “manifold” with coordinates
that are assigned a degree in Zn2 and their sign rule under exchange is given in
terms of the standard scalar product of their degrees. The geometry we study in
this paper is a q-deformed version of the Z2

2-plane, which can be understood as
the algebra C∞(R)[[ξ, θ, z]] subject to ξ 2

= 0, θ2
= 0, ξθ = θξ , ξz = −zξ and

θz = −zθ . The coordinate x on R strictly commutes with everything. Note that
these relations are not super, i.e. not simply Z2-graded commutative. For example, if
we assign degree 1 to ξ and θ then their commutation rule is not fully determined
by their degrees. Furthermore, assigning degree 0 or 1 to z leads to the same
conclusion. Note that z is not taken to be nilpotent. However, assigning degree
(0, 0),(0, 1), (1, 0) and (1, 1) to x, ξ , θ and z, respectively, and then defining the
commutation factor to be

ab = (−1)〈deg(a),deg(b)〉ba,
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where a, b ∈ {x, ξ, θ, z} and 〈−,−〉 is the standard scalar product, reproduces
exactly the desired commutation rules. We must also mention the related notion
of paragrassmann variables ψ , where ψp = 0 for some p > 2 (see for example
[34–37]). The relation between paragrassmann variables, parastatistics and Zn2-graded
commutative algebras is via Green’s ansatz (see [39, 56]).

The readers attention should be brought to the fact that Scheunert proved a theorem
reducing “coloured” Lie algebras to either Lie algebras or Lie superalgebras [50].
Similarly, Neklyudova proved an analogue of this theorem for Zn2-graded, graded-
commutative, associative algebras [9]. Neither of these theorems rules out the study
of Zn2-geometry. One deals with very specific algebras when studying Zn2-manifolds,
for instance, and quite often trying to “pullback” supergeometric constructions to
the category of Zn2-manifolds is nontrivial. The study of Zn2-manifolds does not
reduce to the study of supermanifolds. Moreover, in this paper, we study a particular
Z2

2-graded, associative algebra that is not graded-commutative. Neklyudova’s theorem
does not directly apply here.

In Section 2 we define Hopf Z2
2-algebras and bicovariant differential calculi on

them. There are no truly new results in this section. Indeed, the earliest reference we
are aware of to the notion of a G-graded (here G is an abelian group) or coloured
Hopf algebra is [48, Definition 10.5.11]. Moving on to Section 3, we present the
double-graded quantum superplane Rq(1|1, 1, 1) =: Rq(1|1) as a quantisation of the
Z2

2-plane with a single parameter, which we denote as q. We explore the Z2
2-

bialgebra structure on such ‘spaces’. The Hopf Z2
2-algebra structure on an extended

version is also given. We explicitly construct a bicovariant differential calculus on
Rq(1|1). Moreover, we deduce all the required commutation relations between the
generators of the algebra, their differentials and their partial derivatives. The resulting
structures closely resemble two copies of Manin’s quantum superplane Rq(1|1) [46],
but with subtle interesting differences due to our underlying Z2

2-grading. This needs
to be kept in mind in order to understand the appearance of various signs in the
commutation relations, as well as when dealing with the tensor product—we will
always use the Z2

2-graded tensor product. We will present all relevant calculations
explicitly for clarity and accessibility. We end in Section 4 with a few concluding
remarks.

Conventions and Notation: We work over the field C and we set Zn2 := Z2×Z2×

· · · × Z2 (n-times). In particular, Z2
2 := Z2 × Z2. We fix the order of elements in

Z2
2 lexicographically, i.e.

Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Note that other choices of ordering have appeared in the literature. We will denote
elements of Z2

2 by γi , understanding that i = 0, 1, 2, 3 using the above fixed
ordering. The abelian group Z2

2 comes with a canonical scalar product that we
will denote as 〈−,−〉. In particular, setting γi = (a, b) and γj = (a

′, b′), we have
〈γi, γj 〉 = aa

′
+ bb′. The generalisation to Zn2 (n > 2) is clear.
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2. Preliminaries
2.1. Hopf Z2

2-algebras

Standard references for Hopf algebras and their application in noncommutative
geometry include [18, 38, 42, 47]. The notion of “coloured Hopf algebras” is not
well known but has appeared in the literature over the years, see for example
[7, 33, 40, 48, 57]. Rather than define quite general structures, we will work with
the specific example of coloured Hopf algebras that have an underlying Z2

2-graded
structure. The generalisation to Zn2-graded structure can be made verbatim only
making minimal changes.

DEFINITION 1. A Hopf Z2
2-algebra is a Hopf algebra in the category of Z2

2-graded
vector spaces.

While the above definition is complete, we will spell-out the structure of a Hopf
Z2

2-algebra piece-by-piece for clarity. Note that the tensor product of Z2
2-algebras is

the Z2
2-graded tensor product, i.e.

(a ⊗ b)(c ⊗ d) = (−1)〈deg(b),deg(c)〉ac ⊗ bd.

DEFINITION 2. A Z2
2-algebra is a triple (A, µ, η), where A = ⊕

γi∈Z2
2

Aγi is a Z2
2-

graded vector space, µ : A ⊗C A → A (multiplication) and η : C → A (unit) are
two (grading preserving) Z2

2-graded space morphisms that satisfy

µ ◦ (µ⊗ IdA) = µ ◦ (IdA ⊗ µ), (Associativity) (1)
µ ◦ (η ⊗ IdA) = µ ◦ (η ⊗ IdA) = IdA, (Unity) (2)

where we have used the natural isomorphisms C⊗C ∼= C ∼= C⊗C. A map φ : A→ B
is a Z2

2-algebra morphism if it is a (grading preserving) Z2
2-graded space morphism

that satisfies

φ ◦ µA = µB ◦ φ ⊗ φ, and φ ◦ ηA = ηB. (3)

DEFINITION 3. A Z2
2-coalgebra is a triple (C,1, ε), where C is a Z2

2-graded
vector space, 1 : C → C ⊗ C (coproduct) and ε : C → C (counit) are two (grading
preserving) Z2

2-graded space morphisms that satisfy

(1⊗ IdC) ◦1 = (IdC ⊗1) ◦1, (Coassociativity) (4)
(ε ⊗ IdC) ◦1 = (IdC ⊗ ε) ◦1 = IdC, (Counity) (5)

where we have used the natural isomorphisms C ⊗ C ∼= C ∼= C ⊗ C in the last
equality of counity condition. A map φ : C → D is a Z2

2-coalgebra morphism if it
is a (grading preserving) Z2

2-graded space morphism that satisfies

φ ⊗ φ ◦1C = 1D ◦ φ, and εD ◦ φ = εC . (6)
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DEFINITION 4. A Z2
2-bialgebra is a tuple (A, µ, η,1, ε) where (A, µ, η) is

a Z2
2-algebra and (A,1, ε) is a Z2

2-coalgebra such that the following equivalent
compatibility conditions hold

1. 1 : A→ A⊗A and ε : A→ C are Z2
2-algebras morphisms,

2. µ : A×A→ A and η : C→ A are Z2
2-coalgebra morphisms.

A morphism of Z2
2-bialgebras is a (grading preserving) Z2

2-graded space morphism
that is both a morphism of Z2

2-algebras and Z2
2-coalgebras.

PROPOSITION 1. Let (A, µ, η,1, ε) be a Z2
2-bialgebra with unit element η(1) =

1 3 Aγ0 . Then ε(Aγi ) = 0 for all 1 ≤ i ≤ 3, and ε(1) = 1.

Proof: As ε : A→ C is a grading preserving map it is clear that ε(Aγi ) = 0
with the exception of i = 0, i.e. ε(A(0,0)) cannot be zero as ε is required to be
a morphism of (unital) algebras, thus the unit in A must be sent to the unit in C,
i.e. the number 1. �

DEFINITION 5. Let A be a Z2
2-bialgebra. Then a ∈ A(0,0) is said to be a group-

like element if 1(a) = a ⊗ a. An element b ∈ A is said to be a primitive element
if 1(b) = b ⊗ 1+ 1⊗ b.

PROPOSITION 2. The set of primitive elements of a Z2
2-bialgebra form a Z2

2-Lie
algebra under the Z2

2-graded commutator.

Proof: As the coproduct is a linear map, it is sufficient to consider homogeneous
primitive elements and show that they are closed under the Z2

2-graded commutator.
A direct calculation shows that

1([a, b]) = 1(ab − (−1)〈deg(a),deg(b)〉ba)

=
(
a ⊗ 1+ 1⊗ a

)(
b ⊗ 1+ 1⊗ b

)
− (−1)〈deg(a),deg(b)〉(b ⊗ 1+ 1⊗ b

)
(a ⊗ 1+ 1⊗ a

)
= ab ⊗ 1+ a ⊗ b + (−1)〈deg(a),deg(b)〉b ⊗ a + 1⊗ ab

− (−1)〈deg(a),deg(b)〉(ba ⊗ 1+ b ⊗ a + (−1)〈deg(a),deg(b)〉a ⊗ b + 1⊗ ba
)

= [a, b] ⊗ 1+ 1⊗ [a, b]. (7)

Thus, the set of primitive elements is closed under the Z2
2-graded commutator. �

DEFINITION 6. A Hopf Z2
2-algebra is a Z2

2-bialgebra admitting an antipode,
that is a Z2

2-algebra antihomomorphism S : A → A, such that S(ab) =
(−1)〈deg(a),deg(b)〉S(b)S(a), that satisfies

µ ◦ (S ⊗ IdA) ◦1 = µ ◦ (IdA ⊗ S) ◦1 = η ◦ ε.
A Hopf Z2

2-algebra is thus a tuple (A, µ, η,1, ε,S).
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In practice and where no confusion can arise, we will denote a Hopf Z2
2-algebra

(A, µ, η,1, ε,S) simply as A, understanding all required structure maps as being
implied.

Let us denote the interchange map as σ : A⊗A→ A⊗A, which is defined as
σ(a ⊗ b) = (−1)〈deg(a),deg(b)〉b ⊗ a.

DEFINITION 7. A Hopf Z2
2-algebra A is said to be commutative if it is Z2

2-
commutative as an algebra, i.e. µ ◦ σ = µ. Similarly, a Hopf Z2

2-algebra is said to
be cocommutative if it is Z2

2-cocommutative as a coalgebra, i.e. σ ◦1 = 1.

DEFINITION 8. A Hopf Z2
2-algebra A is said to be involutive if the antipode

satisfies S2
= IdA.

2.2. Bicovariant differential calculus

In the following, we will use the canonical embedding Z2
2 ↪→ N× Z2

2 given by
(γ1, γ2) 7→ (0, γ1, γ2). Note that an N×Z2

2-grading descends to a natural Z3
2-grading.

We will use this fact and employ the Z3
2-graded tensor product.

DEFINITION 9. Let A be a Hopf Z2
2-algebra and let �p(A) be the A-bimodule

of p-forms. A higher-order differential calculus on A is the N×Z2
2-graded algebra

�(A) = ⊕∞p=0�
p(A) such that �(0,∗)(A) = �0(A) ∼= A, and �(p,∗)(A) = �p(A),

together with a linear map, the de Rham differential, d : �p(A) → �p+1(A) of
N× Z2

2-degree (1, 0, 0) that satisfies

1. d2
= 0,

2. d(αβ) = (dα)β + (−1)pαdβ,
where α ∈ �p(A) and β ∈ �(A), and,

3. �(A) is generated by A and �1(A) := Span
{
adb

}
, where a and b ∈ A.

REMARK 1. The notion of a differential calculi on a quantum group can be traced
back to Woronowicz [59]. The above definition with regards to the grading is very
similar to the conventions of Deligne [25] for differential forms on supermanifolds
which naturally come with an N × Z2 grading, but form a Z2 × Z2-commutative
algebra. We also note for some generalisations: graded differential algebras with
dN = 0 have been developed by Kapranov [41], Dubois-Violette [27], Abramov [1],
and Abramov and Kerner [2]; for bicovariant differential and codifferential calculi
on finite groups, see [29]; a q-deformed differential calculus on the light-cone
was given by Akulov, Duplij and Chitov [6], and it allowed the construction of
q-twistors and so a q-deformed differential calculi of q-tensors of any rank.

DEFINITION 10. Let A be a Hopf Z2
2-algebra and let (�(A), d) be a differential

calculus over A. Then (�(A), d) is said to be
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i. left-covariant if there exists a linear map 1L : �(A) → A ⊗ �(A), called
a left coaction, such that

1L(adb) = 1(a)(IdA ⊗ d)1(b),

for all a, b ∈ A.
ii. right-covariant if there exists a linear map 1R : �(A)→ �(A)⊗A, called

a right coaction, such that

1R(adb) = 1(a)(d⊗ IdA)1(b),

for all a, b ∈ A.

Furthermore, a left-covariant and right-covariant differential calculus (�(A), d) is
said to be bicovariant.

REMARK 2. In the current context, we have a similar result to Woronowicz [59,
Proposition 1.4]. In particular, if (�(A), d) is a bicovariant differential calculus over
A, then (

1L ⊗ IdA
)
◦1R =

(
IdA ⊗1R) ◦1L.

We will not need this result in this paper and so omit the proof.

The bicovariance can be restated as the following conditions:

1L(ada + dbb) = 1(a)1L(da)+1L(db)1(b),
1R(ada + dbb) = 1(a)1R(da)+1R(db)1(b). (8)

REMARK 3. It is clear that we do not actually need a Hopf algebra structure to
define left-covariance or right-covariance, but rather just the structure of a bialgebra.
That is, the antipode plays no rôle here.

3. The double-graded quantum superplane Rq(1|1)
3.1. The double-graded quantum superplane

Consider the algebra of polynomials with Z2
2-graded generators(

x︸︷︷︸
(0,0)

, ξ︸︷︷︸
(0,1)

, θ︸︷︷︸
(1,0)

, z︸︷︷︸
(1,1)

)
, (9)

subject to the relations:

xξ − qξx = 0, (10a) xθ − qθx = 0, (10b)

xz− zx = 0, (10c) ξ 2
= 0, (10d)

θ2
= 0, (10e) ξθ − θξ = 0, (10f)

ξz+ q−1zξ = 0, (10g) θz+ q−1zθ = 0, (10h)

where q ∈ C∗ and is not a root of unity. Note that setting q = 1 reduces the
relations to Z2

2-commutativity (see for example [21]).
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DEFINITION 11. The Z2
2-graded, associative, unital algebra

Aq(x, ξ, θ, z) := C[x, ξ, θ, z]/J,
where J is the ideal generated by the relations (10a) to (10h) is the algebra of
polynomials on the double-graded quantum superplane Rq(1|1).

The relations (10a) to (10h) should, of course, be compared with the relations
that define Manin’s superplane Rq(1|2) (see [46]). Manin considers the generators
{x ′, ξ ′, θ ′} of Z2-degree 0, 1 and 1, respectively, all subject to the following relations:

x ′ξ ′ − qξ ′x ′ = 0, (11a)

x ′θ ′ − qθ ′x ′ = 0, (11b)

ξ ′θ ′ + q−1θ ′ξ ′ = 0, (11c)

ξ ′2 = 0, (11d)

θ ′2 = 0. (11e)

In particular, notice that (10d) and (10e) show that ξ and θ are nilpotent, but (10f)
means that they mutually commute rather than anticommute – this is, neglecting
the factor of q−1, the opposite of (11c). That is, they are ‘self-fermions’ but
are ‘relative-bosons’. Moreover, z is not nilpotent, however, it satisfies a twisted
anticommutation relation with both ξ and θ , see (10g) and (10h), and compare with
(11c). Thus, z is a ‘self-boson’ but is a ‘relative-fermion’ with respect to ξ and θ .
The language here is borrowed from the theory of Green–Volkov parastatistics (see
[39, 56]). Many of the following constructions and mathematical results will closely
parallel than of Manin’s superplane, but with subtle sign differences due to the
novel Z2

2-grading we employ.
For brevity, we will set Aq := Aq(x, ξ, θ, z). Let Aq,k (k ∈ N) be the homogeneous

component of Aq spanned by monomials of the form

xmξαθβzn, (12)

i.e. we use a PBW-like basis, where m+ α+ β + n = k. Note that m, n ∈ N, while
due to the nilpotent nature of ξ and θ , α, β ∈ {0, 1}.

3.2. The Z2
2-bialgebra structure on the double-graded quantum superplane

As well as a Z2
2-algebra structure, we naturally have a Z2

2-bialgebra structure
on the double-graded quantum superplane.

PROPOSITION 3. The following coproduct and counit provide Aq(x, ξ, θ, z) with
the structure of a Z2

2-bialgebra (see Definition 3 and Proposition 1):

1(x) = x ⊗ x, (13)
1(ξ) = x ⊗ ξ + ξ ⊗ x, (14)
1(θ) = x ⊗ θ + θ ⊗ x, (15)
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1(z) = x ⊗ z+ z⊗ x, (16)
ε(x) = 1, (17)
ε(ξ) = ε(θ) = ε(z) = 0. (18)

Proof: We need to show that the above defined coproduct and counit do indeed
define a Z2

2-coalgabra (see Definition 3). It is sufficient to check these conditions
on each generator separately. First, we check the counit condition:

(i) (ε ⊗ Id)1(x) = ε(x)⊗ x = 1⊗ x ' x,
(Id⊗ ε)1(x) = x ⊗ ε(x) = x ⊗ 1 ' x.

(ii) (ε ⊗ Id)1(ξ) = ε(x)⊗ ξ = 1⊗ ξ ' ξ ,
(Id⊗ ε)1(ξ) = ξ ⊗ ε(x) = ξ ⊗ 1 ' ξ .

(iii) The same calculation as in part (ii) shows that the counit condition holds
for θ and z.

Secondly, we check the coassociativity:

(iv) (1⊗ Id)1(x) = x ⊗ x ⊗ x,
(Id⊗1)1(x) = x ⊗ x ⊗ x.

(v) (1⊗ Id)1(ξ) = (1⊗ Id)(x⊗ ξ + ξ ⊗x) = x⊗x⊗ ξ +x⊗ ξ ⊗x+ ξ ⊗x⊗x,
(Id⊗1)1(ξ) = (Id⊗1)(x⊗ ξ + ξ ⊗x) = x⊗x⊗ ξ +x⊗ ξ ⊗x+ ξ ⊗x⊗x.

(vi) The same calculation as in part (v) shows that the coassociativity condition
holds for θ and z.

Note that we have a cocommutative Z2
2-coalgabra (see Definition 7).

Thirdly, we check that the algebra and coalgebra structure are compatible. We
do this by showing that the coproduct is an algebra morphism (see Definition 4).
This requires direct calculations:

(vii)
1(x)1(ξ) = (x ⊗ x)(x ⊗ ξ + ξ ⊗ x)

= x2
⊗ xξ + xξ ⊗ x2

= q(x2
⊗ ξx + ξx ⊗ x2)

= q(x ⊗ ξ + ξ ⊗ x)(x ⊗ x)

= q1(ξ)1(x).

(viii) An identical calculation to part (vii) upon replacing ξ with θ shows that

1(x)1(θ) = q1(θ)1(x).

(ix)
1(x)1(z) = (x ⊗ x)(x ⊗ z+ z⊗ x)

= x2
⊗ xz+ xz⊗ x2

= x2
⊗ zx + zx ⊗ x2

= (x ⊗ z+ z⊗ x)(x ⊗ x)

= 1(z)1(x).
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(x) 1(ξ)1(ξ) = 0 is obviously satisfied. Direct calculation shows this to be
consistent.

1(ξ)1(ξ) = (x ⊗ ξ + ξ ⊗ x)(x ⊗ ξ + ξ ⊗ x)

= −xξ ⊗ ξx + ξx ⊗ xξ

= −qq−1ξx ⊗ xξ + ξx ⊗ xξ = 0.

(xi) 1(θ)1(θ) = 0 follows in the same way as in part (x).
(xii)

1(ξ)1(θ) = (x ⊗ ξ + ξ ⊗ x)(x ⊗ θ + θ ⊗ x)

= x2
⊗ ξθ + xθ ⊗ ξx + ξx ⊗ xθ + ξθ ⊗ x2

= x2
⊗ θξ + θx ⊗ xξ + xξ ⊗ θx + θξ ⊗ x2

= (x ⊗ θ + θ ⊗ x)(x ⊗ ξ + ξ ⊗ x)

= 1(θ)1(ξ).

(xiii)
1(ξ)1(z) = (x ⊗ ξ + ξ ⊗ x)(x ⊗ z+ z⊗ x)

= x2
⊗ ξz− xz⊗ ξx + ξx ⊗ xz+ ξz⊗ x2

= −q−1(x2
⊗ zξ + zx ⊗ xξ − xξ ⊗ zx + zξ ⊗ x2)

= −q−1(x ⊗ z+ z⊗ x)(x ⊗ ξ + ξ ⊗ x)

= −q−11(z)1(ξ).

(xiv) The identical calculation to part (viii) upon replacing ξ with θ shows that

1(θ)1(z) = −q−11(z)1(θ). (19)

This completes the proof. �

3.3. The extended double-graded quantum superplane and its Hopf algebra

In order to build a Z2
2-Hopf algebra structure (see Definition 6), we now extend

the algebra of polynomials on the double-graded quantum superplane to include the
formal inverse of x, which we denote as x−1, i.e. xx−1

= x−1x = 1. Clearly, the
Z2

2-degree of x−1 is (0, 0). It is easy to deduce the following commutation rules:

x−1ξ − q−1ξx−1
= 0, (20a)

x−1θ − q−1θx−1
= 0, (20b)

x−1z− zx−1
= 0. (20c)

DEFINITION 12. The Z2
2-graded, associative, unital algebra

Aq(x, x
−1, ξ, θ, z) := C[x, x−1, ξ, θ, z]/J,

where J is the ideal generated by the relations (10a) to (10h) and (20a) to (20c)
is the algebra of polynomials on the extended double-graded quantum superplane
Rq(1|1).
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As the coproduct should be an algebra morphism we deduce that 1(x−1) =
1(x)−1. Thus,

1(x−1) = x−1
⊗ x−1. (21)

Similarly, as the counit should be an algebra morphism we have that

ε(x−1) = 1. (22)

It is clear that upon appending x−1 to the Z2
2-bialgebra Aq(x, ξ, θ, z) that we

obtain another Z2
2-bialgebra. The counit and coassociativity are obvious and the

compatibility condition between the algebra and coalgebra follows from the proof
of Proposition 3 upon x 7→ x−1 and q 7→ q−1.

THEOREM 1. The Z2
2-bialgebra Aq(x, x

−1, ξ, θ, z) can be made into a (cocom-
mutative and involutive) Z2

2-Hopf algebra by defining an antipode in the following
way:

S(x) = x−1, (23a)

S(x−1) = x, (23b)

S(ξ) = −x−1ξx−1, (23c)

S(θ) = −x−1θx−1, (23d)

S(z) = −x−1zx−1. (23e)

Proof: We need to check that the antipode satisfies the condition specified in
Definition 6. It suffices to check this on each generator separately.

(i) µ(S ⊗ Id)1(x) = µ(x−1
⊗ x) = 1 = µ(x ⊗ x−1) = µ(Id⊗ S)1(x).

(ii) µ(S ⊗ Id)1(ξ) = µ(S(x)⊗ ξ + S(ξ)⊗ x) = µ(x−1
⊗ ξ − x−1ξx−1

⊗ x) = 0.
µ(Id⊗S)1(ξ) = µ(x⊗S(ξ)+ξ⊗S(x)) = µ(x⊗(−x−1ξx−1)+ξ⊗x−1) = 0.

(iii) An identical calculation to part (ii) shows that the required condition also
holds for θ and z.

It is clear that the coproduct is cocommutative and a simple calculation shows that
S2
= Id (see Definition 7 and Definition 8). �

3.4. A bicovariant differential calculus

We build the differential calculus (see Definition 9) on the double-graded quantum
superplane Rq(1|1) (see Remark 3) using the following basis of one-forms

( dx︸︷︷︸
(1,0,0)

, dξ︸︷︷︸
(1,0,1)

, dθ︸︷︷︸
(1,1,0)

, dz︸︷︷︸
(1,1,1)

). (24)

Using Definition 10, the left coaction and right coaction of the basis of one-forms
given in (24) is given by

1L(dx) = x ⊗ dx, (25a)
1L(dξ) = x ⊗ dξ + ξ ⊗ dx, (25b)
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1L(dθ) = x ⊗ dθ + θ ⊗ dx, (25c)
1L(dz) = x ⊗ dz+ z⊗ dx, (25d)

and

1R(dx) = dx ⊗ x, (26a)
1R(dξ) = dx ⊗ ξ + dξ ⊗ x, (26b)
1R(dθ) = dx ⊗ θ + dθ ⊗ x, (26c)
1R(dz) = dx ⊗ z+ dz⊗ x. (26d)

We now proceed to find a consistent set of commutation rules on this differential
calculi. To be explicit, by taking the de Rham derivative of the commutation rules
for (x, ξ, θ, z) we arrive at the following.

LEMMA 1. Any commutation rules between the coordinates/generators and their
differentials must satisfy the following:

(xdξ − qdξx)− q(ξdx − q−1dxξ) = 0, (27a)

(xdθ − qdθx)− q(θdx − q−1dxθ) = 0, (27b)
(xdz− dzx)− (zdx − dxz) = 0, (27c)
(ξdθ − dθξ)− (θdξ − dξθ) = 0, (27d)

(ξdz+ q−1dzξ)+ q−1(zdξ + qdξz) = 0, (27e)

(θdz+ q−1dzθ)+ q−1(zdθ + qdθz) = 0. (27f)

We propose a particular set of commutation rules between the coordinates and
the differentials that is linear in the coordinates and, in particular, treats the two
sectors (ξ, dξ) and (θ, dθ) equally. The reader should compare our choice the Type
I differential calculi on the quantum superplane Rq(1|1) as given by Çelik [16].

THEOREM 2. A set of valid commutation rules (in the sense of Lemma 1 and
is consistent with the bicovariance) that is linear in (x, ξ, θ, z) is the following:

xdx = dxx, (28a) xdξ = qdξx, (28b)
xdθ = qdθx, (28c) xdz = dzx, (28d)

ξdx = q−1dxξ, (28e) ξdξ = −dξξ, (28f)

ξdθ = dθξ, (28g) ξdz = −q−1dzξ, (28h)

θdx = q−1dxθ, (28i) θdξ = dξθ, (28j)

θdθ = −dθθ, (28k) θdz = −q−1dzθ, (28l)

zdx = dxz, (28m) zdξ = −qdξz, (28n)
zdθ = −qdθz, (28o) zdz = dzz (28p).
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Proof: It is a simple observation that the above relations satisfy the conditions of
Lemma 1. It remains to check that these relations are consistent with the bicovariance
(see Definition 10). This is a series of direct computations. For instance, consider
the commutation rule (28b);

1L(xdξ − qdξx) = 1(x)1L(dξ)− q1L(d)1(x)
= (x ⊗ x)(x ⊗ dξ + ξ ⊗ dx)− q(x ⊗ dξ + ξ ⊗ dx)(x ⊗ x)

= x2
⊗ xdξ + xξ ⊗ xdx − qx2

⊗ dξx − qξx ⊗ dxx
= 0.

Thus, (28b) respects the left-covariance.

1R(xdξ − qdξx) = 1(x)1R(dξ)− q1R(d)1(x)
= (x ⊗ x)(dx ⊗ ξ + dξ ⊗ x)− q(dx ⊗ ξ + dξ ⊗ x)(x ⊗ x)

= xdx ⊗ xξ + xdξ ⊗ x2
− qdxx ⊗ ξx − qdξx ⊗ x2

= 0.

And so we observe that (28b) also respects the right-covariance and so bicovariance
is established. All the other commutation relations can be shown to respect the
bicovariance via almost identical calculation and so we omit details. �

REMARK 4. There are clearly other choices of differential calculi that could
be made. The classification of the possible bicovariant differential calculi is an
important question. However, we will not touch on this in this paper.

In order to construct higher-order differential forms we need to deduce the
commutation rules between the differentials. This is easily achieved by applying the
de Rham differential to Theorem 2.

THEOREM 3. The (nontrivial) commutation rules between the differentials are:

dxdξ = −qdξdx, (29a)
dxdθ = −qdθdx, (29b)
dxdz = −dzdx, (29c)

dξdθ = −dθdξ, (29d)

dξdz = q−1dzdξ, (29e)

dθdz = q−1dzdθ. (29f)

Moreover, (dx)2 = (dz)2 = 0.

Proof: Direct computation gives the mixed commutation rules and so we omit
details. The nilpotency of dx and dz directly follows as, for example, d(xdx) = dxdx,
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but then using the fact that x and dx strictly commute d(xdx) = d(dxx) = −dxdx.
Exactly the same reasoning establishes that dz is also nilpotent. �

Theorem 2 and Theorem 3 allow one to deduce the explicit form of a bicovariant
differential calculi (see Definition 9) on Rq(1|1).

REMARK 5. Unsurprisingly, just as for supermanifolds and Zn2-manifolds, there
are no top-forms on Rq(1|1) due to the fact that dξ and dθ are not nilpotent. To
see this one has to observe that, for instance, ξ and dξ strictly anticommute. This
extra minus sign does not allow us to conclude that dξ is nilpotent.

We now deduce the commutation relations between the partial derivatives
{∂x, ∂ξ , ∂θ , ∂z} and the generators/coordinates on the double-graded quantum su-
perplane. This is done by careful examination of the de Rham differential, which
is of the form

d = dx∂x + dξ∂ξ + dθ∂θ + dz∂z. (30)

THEOREM 4. The commutation rules between partial derivatives and the coor-
dinates are:

∂xx = 1+ x∂x, (31a) ∂ξx = qx∂ξ , (31b)
∂θx = qx∂θ , (31c) ∂zx = x∂z, (31d)

∂xξ = q
−1ξ∂x, (31e) ∂ξξ = 1− ξ∂ξ , (31f)

∂θξ = ξ∂θ , (31g) ∂zξ = −q
−1ξ∂z, (31h)

∂xθ = q
−1θ∂x, (31i) ∂ξθ = θ∂ξ, (31j)

∂θθ = 1− θ∂θ , (31k) ∂zθ = −q
−1θ∂z, (31l)

∂xz = z∂x, (31m) ∂ξz = −qz∂ξ , (31n)
∂θz = −qz∂θ , (31o) ∂zz = 1+ z∂z. (31p)

Proof: Consider xf , where f ∈ Aq is arbitrary. Directly from the definition of the
de Rham differential, the fact that it satisfies the Leibniz rule and the commutation
rules of Theorem 3 see that

d(xf ) = dx∂x(xf )+ dξ∂ξ (xf )+ dθ∂θ (xf )+ dz∂z(xf )
= df + dxx∂xf + dξqx∂ξf + dθqx∂θf + dzx∂zf.

Equating the terms in the differentials produces the first block of identities, i.e.
(31a) to (31d). Via an almost identical calculation, by considering ξf one obtains
(31e) to (31h). Similarly, by considering θf one obtains (31i) to (31l) and zf one
obtains (31m) to (31p). �
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DEFINITION 13. The Aq-module of first-order differential operators on the
double-graded quantum superplane, which we denote as D1(Aq), is the Aq-bimodule
generated by the partial derivatives {∂x, ∂ξ , ∂θ , ∂z}, subject to the relations (31a) to
(31p).

PROPOSITION 4. The commutation rules between the partial derivatives are:

∂x∂ξ = q∂ξ∂x, (32a) ∂x∂θ = q∂θ∂x, (32b)
∂x∂z = ∂z∂x, (32c) ∂ξ∂θ = ∂θ∂ξ , (32d)

∂ξ∂z = −q
−1∂z∂ξ , (32e) ∂θ∂z = −q

−1∂z∂θ , (32f)
∂ξ∂ξ = 0, (32g) ∂θ∂θ = 0. (32h)

Proof: The proof is obtained by comparing the action of the partial derivatives
on the PBW basis (12). For instance,

∂x∂ξ (x
mξαθβzm) = mqm(xm−1θβzn),

where we have assumed that α = 1. On the other hand,

∂ξ∂x(x
mξαθβzm) = mqm−1(xm−1θβzn).

Comparing the two produces (32a). One obtains (32b) to (32f) in a similar way
and so we omit details. The nilpotent nature of ξ and θ directly imply (32g) and
(32h). �

PROPOSITION 5. The commutation rules between the partial derivatives are
differentials are:

∂xdx = dx∂x, (33a) ∂xdξ = q−1dξ∂x, (33b)

∂xdθ = q−1dθ∂x, (33c) ∂xdz = dz∂x, (33d)

∂ξdx = qdx∂ξ , (33e) ∂ξdξ = −dξ∂ξ , (33f)
∂ξdθ = dθ∂ξ , (33g) ∂ξdz = −qdz∂ξ , (33h)

∂θdx = qdx∂θ , (33i) ∂θdθ = −dθ∂θ , (33j)
∂θdξ = dξ∂θ , (33k) ∂θdz = −qdz∂θ , (33l)

∂zdx = dx∂z, (33m) ∂zdξ = −q−1dξ∂z, (33n)

∂zdθ = −q−1dθ∂z, (33o) ∂zdz = dz∂z. (33p)

Proof: The above relations are found by using ∂xa (x
bdxc) = δ ba dxc, where we

have set xa := (x, ξ, θ, z), and applying this to (28a) to (28p). For instance,

∂x(xdξ) = dξ = q∂x(dξx),

where we have used (28b). For consistency this implies that

∂xdξ = q−1dξ∂x,
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i.e. (33b) is established. All the other relations follow from similar considerations
and so we omit details. �

4. Concluding remarks
In this paper, we defined a Z2

2-graded generalisation of Manin’s quantum
superplane and presented a bicovariant differential calculi rather explicitly. In this
respect, we have a concrete example of a noncommutative differential Z2

2-geometry.
To our knowledge, the double-graded quantum superplane is the first such example
to be defined and studied. We must remark that there has been some renewed
interest in Zn2-gradings in physics, see for example [3–5, 14, 54, 55]. It is not
clear if these ‘higher gradings’ play a fundamental rôle in physics in the same way
as Z2-gradings do. However, the results of the aforementioned papers suggest that
systems that are Zn2-graded are not as uncommon as one might initially think. Thus,
we believe, that further work on noncommutative Zn2-geometry is warranted and that
further links with physics will be uncovered. Indeed, we have only scratched the
surface in this paper and have focused on mathematical questions.
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[15] T. Brzeziński: Remarks on bicovariant differential calculi and exterior Hopf algebras, Lett. Math. Phys.

27, 287–300 (1993).
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[17] S. Çelik: Bicovariant differential calculus on the quantum superspace Rq (1|2), J. Algebra Appl. 15,

1650172, 17 (2016).
[18] V. Chari and A. Pressley: A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1995

(Corrected reprint of the 1994 original).
[19] L.S. Cirio, G. Landi, and R.J. Szabo: Algebraic deformations of toric varieties I. General constructions,

Adv. Math. 246 (2013), 33–88.
[20] A. Connes: Noncommutative Geometry, Academic Press, Inc., San Diego, CA, 1994.
[21] T. Covolo, J. Grabowski, and N. Poncin: The category of Zn2-supermanifolds, J. Math. Phys. 57, 073503,

16 (2016).
[22] T. Covolo, J. Grabowski, and N. Poncin: Splitting theorem for Zn2-supermanifolds, J. Geom. Phys. 110,

393–401 (2016).
[23] J. de Boer, P. A. Grassi, and P. van Nieuwenhuizen: Non-commutative superspace from string theory,

Physics Letters B 574, 98–104 (2003).
[24] A. de Goursac: Noncommutative supergeometry and quantum supergroups, J. Phys. Conference Series

597, 012028 (2015).
[25] P. Deligne and D. S. Freed: Sign manifesto, in Quantum Fields and Strings: a Course for Mathematicians,

Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 357–363.
[26] V. G. Drinfel’d: Quantum groups, in Proceedings of the International Congress of Mathematicians, Vol.

1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.
[27] M. Dubois-Violette: Generalized differential spaces with dN = 0 and the q-differential calculus, in

quantum groups and integrable systems, I (Prague, 1996), Czechoslovak J. Phys. 46, no. 12 (1996),
1227–1233.

[28] G. H. E. Duchamp, P. Blasiak, A. Horzela, K. A. Penson, and A. I. Solomon: Hopf Algebras in General
and in Combinatorial Physics: a practical introduction, arXiv:0802.0249.

[29] S. Duplij: Coderivations and codifferential calculi on finite groups, in Exotic Algebraic and Geometric
Structures in Theoretical Physics, S. Duplij, ed., Nova Publishers, New York, 2018, pp. 145–160.

[30] S. Duplij, W. Siegel, and J. Bagger (Eds.): Concise Encyclopedia of Supersymmetry And Noncommutative
Structures In Mathematics And Physics, Kluwer Academic Publishers, Dordrecht-Boston-London, 2004
(Second printing, Springer Science and Business Media, Berlin-New York-Heidelberg, 2005).

[31] S. Duplij and S. Sinel’shchikov: Classification of Uq (sl2)-module algebra structures on the quantum
plane, J. Math. Physics, Analysis, Geometry 6, 21–46 (2010).

[32] M. El Falaki and E. H. Tahri: Quantum supergroup structure of (1+ 1)-dimensional quantum superplane,
its dual and its differential calculus, J. Phys. A 34, 3403–3412 (2001).

[33] J. Feldvoss: Representations of Lie colour algebras, Adv. Math. 157, 95–137 (2001).
[34] A. T. Filippov, A. P Isaev and A. B. Kurdikov: Para-Grassmann analysis and quantum groups, Modern

Phys. Lett. A 7, no. 23 (1992), 2129–2141.
[35] A. T. Filippov, A. P Isaev and A. B. Kurdikov: Para-Grassmann differential calculus, Theoret. Math.

Phys. 94, no. 2 (1993), 150–165.
[36] V. D. Gershun and V. I. Tkach: Para-grassman variables and description of massive particles with spin

equalling one, Ukr. Fiz. Zh. 29 (1984), 1620.
[37] V. D. Gershun and V. I. Tkach: Description of arbitrary-spin particles on the base of local supersymmetry,

Probl. Nucl. Phys. Cosmic Rays 23 (1985), 42.



400 A. J. BRUCE and S. DUPLIJ

[38] J. M. Gracia-Bondı́a, J. C. Várilly, and H. Figueroa: Elements of Noncommutative Geometry, Birkhäuser
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